Integrin dynamics produce a delayed stage of long-term potentiation and memory consolidation.

نویسندگان

  • Alex H Babayan
  • Enikö A Kramár
  • Ruth M Barrett
  • Matiar Jafari
  • Jakob Häettig
  • Lulu Y Chen
  • Christopher S Rex
  • Julie C Lauterborn
  • Marcelo A Wood
  • Christine M Gall
  • Gary Lynch
چکیده

Memory consolidation theory posits that newly acquired information passes through a series of stabilization steps before being firmly encoded. We report here that in rat and mouse, hippocampus cell adhesion receptors belonging to the β1-integrin family exhibit dynamic properties in adult synapses and that these contribute importantly to a previously unidentified stage of consolidation. Quantitative dual immunofluorescence microscopy showed that induction of long-term potentiation (LTP) by theta burst stimulation (TBS) activates β1 integrins, and integrin-signaling kinases, at spine synapses in adult hippocampal slices. Neutralizing antisera selective for β1 integrins blocked these effects. TBS-induced integrin activation was brief (<7 min) and followed by an ∼45 min period during which the adhesion receptors did not respond to a second application of TBS. Brefeldin A, which blocks integrin trafficking to the plasma membrane, prevented the delayed recovery of integrin responses to TBS. β1 integrin-neutralizing antisera erased LTP when applied during, but not after, the return of integrin responsivity. Similarly, infusions of anti-β1 into rostral mouse hippocampus blocked formation of long-term, object location memory when started 20 min after learning but not 40 min later. The finding that β1 integrin neutralization was effective in the same time window for slice and behavioral experiments strongly suggests that integrin recovery triggers a temporally discrete, previously undetected second stage of consolidation for both LTP and memory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PKMζ contributes in consolidation, retrieval and maintenance of amygdala dependent fear memory in rats

Introduction: Protein kinase M zeta (PKM&zeta;) is assumed to be actively involved in retainig long-term potentiation. The goal of this study was to investigate the role of PKM&zeta; in basolateral amygdala (BLA) upon acquisition, consolidation, retention and retrieval of memory using a specific inhibitor of PKM&zeta;. Methods: Sixty male wistar rats underwent stereotaxic surgery and were cannu...

متن کامل

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats

Objective(s): Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Materials and Methods: Male Wistar rats were divided into 4 groups: the control, the control-C...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

Protective Effects of Enriched Environment Against Transient Cerebral Ischemia-Induced Impairment of Passive Avoidance Memory and Long-Term Potentiation in Rats

Introduction: Enriched Environment (EE), a complex novel environment, has been demonstrated to improve synaptic plasticity in both injured and intact animals. The present study investigated the capacity of an early environmental intervention to normalize the impairment of passive avoidance memory and Long-Term Potentiation (LTP) induced by transient bilateral common carotid artery occlusion (2-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 37  شماره 

صفحات  -

تاریخ انتشار 2012